112408-01
Zur Theorie der fast periodischen Funktionen. Hefte 1-3 (alles Erschienene).
(Berlin und Stockholm, 1924-25). - (30 x 23 cm). SS. (29)-127/ SS. (101)-213/ SS. (237)-281. Original-Broschuren, unbeschnitten. (Sonderdrucke aus: Acta mathematica).
Erste Ausgabe seines Hauptwerkes. - Mit den Untertiteln: I. Eine Verallgemeinerung der Theorie der Fourierreihen; - II. Zusammenhang der fastperiodischen Funktionen mit Funktionen von unendlich vielen Variabeln; gleichmässige Approximation durch trigonometrische Summen; - III. Dirichletentwicklung analytischer Funktionen. - "The problem of which functions may be represented by Dirichlet series led Bohr to his main achievement, the theory of almost periodic functions, on which the greater part of his later work is concentrated... Whereas hitherto in the theory of Dirichlet series one had always worked with frequencies forming a monotonic sequence, Bohr discovered that in order to obtain an answer to the problem one would have to consider series with quite arbitrary frequencies. The answer was obtained by introducing the notion of almost periodicity. The theory was published in three papers in "Acta Mathematica", and numerous mathematicians joined in the work on its simplification and extension. Thus Weil and Wiener connected it with the classical theories of integral equations and Fourier integrals, and Bochner developed a summation method for Bohr-Fourier series generalizing Fejér's theorem" (DSB). - Einbände gering bestoßen, sonst gut erhalten. - DSB 2, 238
Zur Theorie der fast periodischen Funktionen. Hefte 1-3 (alles Erschienene).
(Berlin und Stockholm, 1924-25). - (30 x 23 cm). SS. (29)-127/ SS. (101)-213/ SS. (237)-281. Original-Broschuren, unbeschnitten. (Sonderdrucke aus: Acta mathematica).
Erste Ausgabe seines Hauptwerkes. - Mit den Untertiteln: I. Eine Verallgemeinerung der Theorie der Fourierreihen; - II. Zusammenhang der fastperiodischen Funktionen mit Funktionen von unendlich vielen Variabeln; gleichmässige Approximation durch trigonometrische Summen; - III. Dirichletentwicklung analytischer Funktionen. - "The problem of which functions may be represented by Dirichlet series led Bohr to his main achievement, the theory of almost periodic functions, on which the greater part of his later work is concentrated... Whereas hitherto in the theory of Dirichlet series one had always worked with frequencies forming a monotonic sequence, Bohr discovered that in order to obtain an answer to the problem one would have to consider series with quite arbitrary frequencies. The answer was obtained by introducing the notion of almost periodicity. The theory was published in three papers in "Acta Mathematica", and numerous mathematicians joined in the work on its simplification and extension. Thus Weil and Wiener connected it with the classical theories of integral equations and Fourier integrals, and Bochner developed a summation method for Bohr-Fourier series generalizing Fejér's theorem" (DSB). - Einbände gering bestoßen, sonst gut erhalten. - DSB 2, 238
280 €